Developing deep generative models has been an emerging field due to the ability to model and generate complex data for various purposes, such as image synthesis and molecular design. However, the advancement of deep generative models is limited by challenges to generate objects that possess multiple desired properties: 1) the existence of complex correlation among real-world properties is common but hard to identify; 2) controlling individual property enforces an implicit partially control of its correlated properties, which is difficult to model; 3) controlling multiple properties under various manners simultaneously is hard and under-explored. We address these challenges by proposing a novel deep generative framework that recovers semantics and the correlation of properties through disentangled latent vectors. The correlation is handled via an explainable mask pooling layer, and properties are precisely retained by generated objects via the mutual dependence between latent vectors and properties. Our generative model preserves properties of interest while handling correlation and conflicts of properties under a multi-objective optimization framework. The experiments demonstrate our model's superior performance in generating data with desired properties.
翻译:由于有能力为图象合成和分子设计等各种目的制作和生成复杂数据,开发深层基因模型已成为一个新兴领域,因为能够为图像合成和分子设计等各种目的制作和生成复杂数据。然而,深层基因模型的进展因产生具有多重预期特性的物体的挑战而受到限制:(1) 现实世界特性之间存在复杂关联是常见的,但很难确定;(2) 控制个人财产使对其相关属性的隐含部分控制难以建模;(3) 以不同方式同时控制多种属性是困难的,探索不足。我们通过提出一个新的深层基因框架来应对这些挑战,通过分解的潜载体来恢复语义和属性的关联性。通过可解释的遮罩集合层处理这种关联性,而生成的物体通过潜在矢量和属性之间的相互依存性来精确保留特性。我们的基因模型在多目标优化框架下处理属性的关联和冲突时保存着利益特性。实验表明我们的模型在生成与理想特性的数据方面的优异性。