We present a one-stage Fully Convolutional Line Parsing network (F-Clip) that detects line segments from images. The proposed network is very simple and flexible with variations that gracefully trade off between speed and accuracy for different applications. F-Clip detects line segments in an end-to-end fashion by predicting each line's center position, length, and angle. We further customize the design of convolution kernels of our fully convolutional network to effectively exploit the statistical priors of the distribution of line angles in real image datasets. We conduct extensive experiments and show that our method achieves a significantly better trade-off between efficiency and accuracy, resulting in a real-time line detector at up to 73 FPS on a single GPU. Such inference speed makes our method readily applicable to real-time tasks without compromising any accuracy of previous methods. Moreover, when equipped with a performance-improving backbone network, F-Clip is able to significantly outperform all state-of-the-art line detectors on accuracy at a similar or even higher frame rate. In other word, under same inference speed, F-Clip always achieving best accuracy compare with other methods. Source code https://github.com/Delay-Xili/F-Clip.


翻译:我们展示了一个从图像中检测线条段的单阶段全演线剖析网络(F-Clip),它从图像中检测线条段。提议的网络非常简单灵活,有各种变化,在不同应用程序的速度和准确性之间进行优于交换。F-Clip通过预测每个线条的中心位置、长度和角度,以端到端的方式检测线条段。我们进一步定制了我们完全革命网络的组合内核的设计,以有效利用真实图像数据集中线角分布的统计前端。我们进行了广泛的实验,并表明我们的方法在效率和准确性之间实现了显著的更佳的交换,结果在单一的GPU上形成高达73 FPS的实时线条探测器。这种推断速度使得我们的方法很容易适用于实时任务,而不会影响以前方法的准确性能改进的主干网。此外,F-Clip能够大大超越所有在类似甚至更高的框架速率上的状态-艺术线探测器。在其它单词中,将AD-Fliply/Flip 的精确度方法与其它的精确度进行对比。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员