We propose a framework to study the effect of local recovery requirements of codeword symbols on the dimension of linear codes, based on a combinatorial proxy that we call \emph{visible rank}. The locality constraints of a linear code are stipulated by a matrix $H$ of $\star$'s and $0$'s (which we call a "stencil"), whose rows correspond to the local parity checks (with the $\star$'s indicating the support of the check). The visible rank of $H$ is the largest $r$ for which there is a $r \times r$ submatrix in $H$ with a unique generalized diagonal of $\star$'s. The visible rank yields a field-independent combinatorial lower bound on the rank of $H$ and thus the co-dimension of the code. We prove a rank-nullity type theorem relating visible rank to the rank of an associated construct called \emph{symmetric spanoid}, which was introduced by Dvir, Gopi, Gu, and Wigderson~\cite{DGGW20}. Using this connection and a construction of appropriate stencils, we answer a question posed in \cite{DGGW20} and demonstrate that symmetric spanoid rank cannot improve the currently best known $\widetilde{O}(n^{(q-2)/(q-1)})$ upper bound on the dimension of $q$-query locally correctable codes (LCCs) of length $n$. We also study the $t$-Disjoint Repair Group Property ($t$-DRGP) of codes where each codeword symbol must belong to $t$ disjoint check equations. It is known that linear $2$-DRGP codes must have co-dimension $\Omega(\sqrt{n})$. We show that there are stencils corresponding to $2$-DRGP with visible rank as small as $O(\log n)$. However, we show the second tensor of any $2$-DRGP stencil has visible rank $\Omega(n)$, thus recovering the $\Omega(\sqrt{n})$ lower bound for $2$-DRGP. For $q$-LCC, however, the $k$'th tensor power for $k\le n^{o(1)}$ is unable to improve the $\widetilde{O}(n^{(q-2)/(q-1)})$ upper bound on the dimension of $q$-LCCs by a polynomial factor.
翻译:我们提出一个框架来研究本地对线性代码值的回收要求对线性代码维度的影响, 其依据是我们称之为 = = = = = = = = = = = = = = = 。 线性代码的所在地限制由矩阵 $H $, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元; 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 与当地平价, = = = = = = = = = = ( = = = = = = = =) 与相关结构 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =