Let $\sigma$ be a first-order signature and let $\mathbf{W}_n$ be the set of all $\sigma$-structures with domain $[n] = \{1, \ldots, n\}$. We can think of each structure in $\mathbf{W}_n$ as representing a "possible (state of the) world". By an inference framework we mean a class $\mathbf{F}$ of pairs $(\mathbb{P}, L)$, where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$ and each $\mathbb{P}_n$ is a probability distribution on $\mathbb{W}_n$, and $L$ is a logic with truth values in the unit interval $[0, 1]$. From the point of view of probabilistic and logical expressivity one may consider an inference framework as optimal if it allows any pair $(\mathbb{P}, L)$ where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$ is a sequence of probability distributions on $\mathbb{W}_n$ and $L$ is a logic. But from the point of view of using a pair $(\mathbb{P}, L)$ from such an inference framework for making inferences on $\mathbb{W}_n$ when $n$ is large we face the problem of computational complexity. This motivates looking for an "optimal" trade-off (in a given context) between expressivity and computational efficiency. We define a notion that an inference framework is "asymptotically at least as expressive" as another inference framework. This relation is a preorder and we describe a (strict) partial order on the equivalence classes of some inference frameworks that in our opinion are natural in the context of machine learning and artificial intelligence. The results have bearing on issues concerning efficient learning and probabilistic inference, but are also new instances of results in finite model theory about "almost sure elimination" of extra syntactic features (e.g quantifiers) beyond the connectives. Often such a result has a logical convergence law as a corollary.
翻译:$\\ gmam $ 是一个最先的签名, 并且 $\ mathbf{W} 美元是所有域的 $[n] = $1,\ldot, n $。 我们可以在 $\ mathbf{W\\\\ n$ 美元中想象每个结构代表着“ 可能( 状态) 世界 ” 。 通过一个推论框架, 我们指的是一个等级 $\ mathb{F} F} 美元, 美元 (mathbb{P}, L) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 一种逻辑, 问题, 问题, 问题, 。 从 美元, 美元, 交易, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 游戏, 美元, 美元, 美元, 美元, 游戏, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 游戏, 美元, 美元, 等, 等, 等, 等, 。 等, 。