Post-disaster road assessment (PDRA) is essential for emergency response, enabling rapid evaluation of infrastructure conditions and efficient allocation of resources. Although drones provide a flexible and effective tool for PDRA, routing them in large-scale networks remains challenging. Traditional optimization methods scale poorly and demand domain expertise, while existing deep reinforcement learning (DRL) approaches adopt a single-task paradigm, requiring separate models for each problem variant and lacking adaptability to evolving operational needs. This study proposes a unified model (UM) for drone routing that simultaneously addresses eight PDRA variants. By training a single neural network across multiple problem configurations, UM captures shared structural knowledge while adapting to variant-specific constraints through a modern transformer encoder-decoder architecture. A lightweight adapter mechanism further enables efficient finetuning to unseen attributes without retraining, enhancing deployment flexibility in dynamic disaster scenarios. Extensive experiments demonstrate that the UM reduces training time and parameters by a factor of eight compared with training separate models, while consistently outperforming single-task DRL methods by 6--14\% and traditional optimization approaches by 24--82\% in terms of solution quality (total collected information value). The model achieves real-time solutions (1--10 seconds) across networks of up to 1,000 nodes, with robustness confirmed through sensitivity analyses. Moreover, finetuning experiments show that unseen attributes can be effectively incorporated with minimal cost while retaining high solution quality. The proposed UM advances neural combinatorial optimization for time-critical applications, offering a computationally efficient, high-quality, and adaptable solution for drone-based PDRA.
翻译:灾后道路评估(PDRA)对应急响应至关重要,能够快速评估基础设施状况并高效分配资源。尽管无人机为PDRA提供了灵活有效的工具,但在大规模网络中规划其路径仍具挑战性。传统优化方法扩展性差且需要领域专业知识,而现有深度强化学习(DRL)方法采用单任务范式,需为每个问题变体单独训练模型,且难以适应动态变化的操作需求。本研究提出一种用于无人机路径规划的统一模型(UM),可同时处理八种PDRA变体。通过跨多种问题配置训练单一神经网络,UM在利用现代Transformer编码器-解码器架构适应变体特定约束的同时,能够捕捉共享的结构知识。轻量级适配器机制进一步支持对未见属性进行高效微调而无需重新训练,增强了动态灾害场景中的部署灵活性。大量实验表明,与训练独立模型相比,UM将训练时间和参数量减少了八倍;在解的质量(收集信息总价值)方面,始终优于单任务DRL方法6-14%,优于传统优化方法24-82%。该模型能在包含多达1,000个节点的网络中实现实时求解(1-10秒),其鲁棒性通过敏感性分析得到验证。此外,微调实验表明,可以极低成本有效融入未见属性,同时保持高质量解。所提出的UM推动了时间敏感型应用的神经组合优化研究,为基于无人机的PDRA提供了计算高效、高质量且适应性强的解决方案。