In statistical decision theory involving a single decision-maker, an information structure is said to be better than another one if for any cost function involving a hidden state variable and an action variable which is restricted to be conditionally independent from the state given some measurement, the solution value under the former is not worse than that under the latter. For finite spaces, a theorem due to Blackwell leads to a complete characterization on when one information structure is better than another. For stochastic games, in general, such an ordering is not possible since additional information can lead to equilibria perturbations with positive or negative values to a player. However, for zero-sum games in a finite probability space, P\k{e}ski introduced a complete characterization of ordering of information structures. In this paper, we obtain an infinite dimensional (standard Borel) generalization of P\k{e}ski's result. A corollary is that more information cannot hurt a decision maker taking part in a zero-sum game. We establish two supporting results which are essential and explicit though modest improvements on prior literature: (i) a partial converse to Blackwell's ordering in the standard Borel setup and (ii) an existence result for equilibria in zero-sum games with incomplete information.
翻译:在涉及单一决策者的统计决策理论中,如果信息结构被认为优于另一个结构,如果任何涉及隐藏状态变量和行动变量的成本功能涉及一个隐藏状态变量和行动变量,而该变量在条件上只限于独立于某个国家,那么前者的解决方案值并不比后者差。对于有限的空间,由于Blackwell的理论导致对一个信息结构何时优于另一个信息结构的完整描述。对于随机游戏来说,一般而言,这样的命令是不可能的,因为额外信息可能导致对一个玩家具有正值或负值的平衡干扰。然而,对于限定概率空间的零和动作变量,P\k{e}ski 引入了信息结构排序的完整特征。在本文中,我们对P\k{e}ski的结果进行了无限的维度(标准波雷尔)的概括。一个必然的推论是,在零和游戏中,更多的信息不会伤害一个决策者。我们建立了两个支持结果,这些结果虽然对以前的文献有一定的改进,但却是基本的和明确的。但是,对于有限概率空间的零和零和零的游戏,Plwell游戏在标准Boral的建立结果中,(ial-qial-hal-hal-hal-hal-hal-hal-hal-halsupsupsupsupsild)中,在标准 Borsild-sild-balsild-