In statistical decision theory involving a single decision-maker, an information structure is said to be better than another one if for any cost function involving a hidden state variable and an action variable which is restricted to be conditionally independent from the state given some measurement, the solution value under the former is not worse than that under the latter. For finite spaces, a theorem due to Blackwell leads to a complete characterization on when one information structure is better than another. For stochastic games, in general, such an ordering is not possible since additional information can lead to equilibria perturbations with positive or negative values to a player. However, for zero-sum games in a finite probability space, P\k{e}ski introduced a complete characterization of ordering of information structures. In this paper, we obtain an infinite dimensional (standard Borel) generalization of P\k{e}ski's result. A corollary is that more information cannot hurt a decision maker taking part in a zero-sum game. We establish two supporting results which are essential and explicit though modest improvements on prior literature: (i) a partial converse to Blackwell's ordering in the standard Borel setup and (ii) an existence result for equilibria in zero-sum games with incomplete information.


翻译:在涉及单一决策者的统计决策理论中,如果信息结构被认为优于另一个结构,如果任何涉及隐藏状态变量和行动变量的成本功能涉及一个隐藏状态变量和行动变量,而该变量在条件上只限于独立于某个国家,那么前者的解决方案值并不比后者差。对于有限的空间,由于Blackwell的理论导致对一个信息结构何时优于另一个信息结构的完整描述。对于随机游戏来说,一般而言,这样的命令是不可能的,因为额外信息可能导致对一个玩家具有正值或负值的平衡干扰。然而,对于限定概率空间的零和动作变量,P\k{e}ski 引入了信息结构排序的完整特征。在本文中,我们对P\k{e}ski的结果进行了无限的维度(标准波雷尔)的概括。一个必然的推论是,在零和游戏中,更多的信息不会伤害一个决策者。我们建立了两个支持结果,这些结果虽然对以前的文献有一定的改进,但却是基本的和明确的。但是,对于有限概率空间的零和零和零的游戏,Plwell游戏在标准Boral的建立结果中,(ial-qial-hal-hal-hal-hal-hal-hal-hal-halsupsupsupsupsild)中,在标准 Borsild-sild-balsild-

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月3日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员