Federated learning is an effective approach to realize collaborative learning among edge devices without exchanging raw data. In practice, these devices may connect to local hubs instead of connecting to the global server (aggregator) directly. Due to the (possibly limited) computation capability of these local hubs, it is reasonable to assume that they can perform simple averaging operations. A natural question is whether such local averaging is beneficial under different system parameters and how much gain can be obtained compared to the case without such averaging. In this paper, we study hierarchical federated learning with stochastic gradient descent (HF-SGD) and conduct a thorough theoretical analysis to analyze its convergence behavior. In particular, we first consider the two-level HF-SGD (one level of local averaging) and then extend this result to arbitrary number of levels (multiple levels of local averaging). The analysis demonstrates the impact of local averaging precisely as a function of system parameters. Due to the higher communication cost of global averaging, a strategy of decreasing the global averaging frequency and increasing the local averaging frequency is proposed. Experiments validate the proposed theoretical analysis and the advantages of HF-SGD.


翻译:联邦学习是在不交换原始数据的情况下实现边缘装置之间协作学习的有效方法,实际上,这些装置可能与地方中心连接,而不是直接连接到全球服务器(聚合器),由于这些地方中心具有(可能有限的)计算能力,因此有理由假定它们能够进行简单的平均作业。自然的问题是,在不同系统参数下,这种地方平均是否有益,与没有平均数据的情况相比,能取得多大的收益。在本文中,我们研究以随机梯度下降(HF-SGD)进行分级联合学习,并进行透彻的理论分析,分析其趋同行为。特别是,我们首先考虑两级的HF-SGD(当地平均水平的1级),然后将这一结果扩大到任意数量(当地平均水平的多重水平),分析表明地方平均率作为系统参数的函数是否准确产生影响。由于全球平均通信成本较高,我们提出了降低全球平均频率和增加当地平均频率的战略。实验证实了拟议的理论分析以及高频-SGD的优势。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
17+阅读 · 2019年3月28日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员