In this paper, we study the generalized Boussinesq equation to model the water wave problem with surface tension. First, we investigate the initial value problem in the Sobolev spaces. We derive some conditions under which the solutions of this equation are global or blow-up in time, and next, we extend our results to the Bessel potential spaces. The asymptotic behavior of the solutions is also determined. The non-existence of solitary waves for some parameters is proved using Pohozaev-type identities. We generate solitary wave solutions of generalized Boussinesq equation using the Petviashvili iteration method numerically. In order to investigate the time evolution of solutions to the generalized Boussinesq equation, we propose the Fourier pseudo-spectral numerical method. After studying the time evolution of the single solitary wave, we focus on the gap interval where neither a global existence nor a blow-up result has been established theoretically. Our numerical results successfully fill the gaps left by the theoretical ones.
翻译:在本文中,我们研究了通用的波西奈斯克方程式,以模拟海浪问题与地表张力。首先,我们研究了索博列夫空间的初始值问题。我们得出了一些条件,在这个条件下,这个方程式的解决方案是全球性的,或者在时间上是爆炸性的,然后,我们将结果扩大到贝塞尔潜在空间。解决方案的无症状行为也得到了确定。某些参数不存在单波。用Pohozaev类型的身份证明某些参数不存在单波。我们用Petviashvili 迭代法从数字上提出了普惠性波西奈斯克方程式的单波解。为了调查普特维什维平方程式的解决方案的时间演变情况,我们提出了四重伪光谱数值方法。在研究了单波的演进化过程之后,我们集中关注了单个单单波的间隔,而全球的存在和打击结果都没有在理论上确定。我们的数字结果成功地填补了理论的空隙。