Recently, data-driven models such as deep neural networks have shown to be promising tools for modelling and state inference in soft robots. However, voluminous amounts of data are necessary for deep models to perform effectively, which requires exhaustive and quality data collection, particularly of state labels. Consequently, obtaining labelled state data for soft robotic systems is challenged for various reasons, including difficulty in the sensorization of soft robots and the inconvenience of collecting data in unstructured environments. To address this challenge, in this paper, we propose a semi-supervised sequential variational Bayes (DSVB) framework for transfer learning and state inference in soft robots with missing state labels on certain robot configurations. Considering that soft robots may exhibit distinct dynamics under different robot configurations, a feature space transfer strategy is also incorporated to promote the adaptation of latent features across multiple configurations. Unlike existing transfer learning approaches, our proposed DSVB employs a recurrent neural network to model the nonlinear dynamics and temporal coherence in soft robot data. The proposed framework is validated on multiple setup configurations of a pneumatic-based soft robot finger. Experimental results on four transfer scenarios demonstrate that DSVB performs effective transfer learning and accurate state inference amidst missing state labels.
翻译:最近,由数据驱动的模型,如深神经网络,显示是软机器人建模和状态推断的有希望的工具;然而,深型模型要有效运作,需要大量数据才能有效运行,深型模型需要大量数据才能有效运行,这需要详尽而高质量的数据收集,特别是国家标签;因此,软机器人系统获得贴标签的国家数据受到各种原因的挑战,包括软机器人的感应困难和在无结构环境中收集数据的不便。为了应对这一挑战,我们在本文件中提议了一个半监督的连续相继变换贝亚(DSVB)框架,用于在某些机器人配置上缺少状态标签的软机器人中传输学习和状态推断。考虑到软机器人可能在不同机器人配置下展示不同动态,因此还采用了一个特有空间转移战略,以促进对多种配置的潜在特征的适应。与现有的传输学习方法不同,我们提议的DSVB使用一个经常性的神经网络,以模拟非线性动态和软机器人数据的时间一致性。拟议框架通过一个基于充电软机器人手指的多设配置配置配置来验证。考虑到软机器人配置可能在不同机器人配置下展示不同动态的动态动态,因此,在四个标签传输中进行实时转换。</s>