In this paper, a high-order semi-implicit (SI) asymptotic preserving (AP) and divergence-free finite difference weighted essentially nonoscillatory (WENO) scheme is proposed for magnetohydrodynamic (MHD) equations. We consider the sonic Mach number $\varepsilon$ ranging from $0$ to $\mathcal{O}(1)$. High-order accuracy in time is obtained by SI implicit-explicit Runge-Kutta (IMEX-RK) time discretization. High-order accuracy in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions. A constrained transport method is applied to maintain a discrete divergence-free condition. We formally prove that the scheme is AP. Asymptotic accuracy (AA) in the incompressible MHD limit is obtained if the implicit part of the SI IMEX-RK scheme is stiffly accurate. Numerical experiments are provided to validate the AP, AA, and divergence-free properties of our proposed approach. Besides, the scheme can well capture discontinuities such as shocks in an essentially non-oscillatory fashion in the compressible regime, while it is also a good incompressible solver with uniform large-time step conditions in the low sonic Mach limit.
翻译:在本文中,对磁力动力学(MHD)方程式提出了高序半隐性保存(AP)和无差异的有限差异加权(WENO)办法,对磁力流体动力学(MHD)方程式提出了高序半隐性保存(SI)和无差异的有限差异加权(WENO)办法。我们认为,SIS隐含的Runge-Kutta(IMEX-RK)系统(IMEX-Kutta)的隐含部分非常精确,可取得高序时间精确度。通过具有独特性重建的有限差异WENO方案,可以实现空间高序精确度的精确度。采用限制性的运输方法来维持离散的离散差异(WENO)条件。我们正式证明,这个办法是AP。如果SI IMEX-KRK计划隐含的精度部分非常精确,则获得不可抑制的MHD限额的音性(AAAAAA)。此外,这个办法还可以捕捉摸不透性地捕捉到在基本非统一的不统一式制度下,在高度稳定状态下进行稳定式的递制式的不精确的不精确的不测。