Maximal regularity for the Stokes operator plays a crucial role in the theory of the non-stationary Navier--Stokes equations. In this paper, we consider the finite element semi-discretization of the non-stationary Stokes problem and establish the discrete counterpart of maximal regularity in $L^q$ for $q \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$. For the proof of discrete maximal regularity, we introduce the temporally regularized Green's function. With the aid of this notion, we prove discrete maximal regularity without the Gaussian estimate. As an application, we present $L^p(0,T;L^q(\Omega))$-type error estimates for the approximation of the non-stationary Stokes problem.


翻译:Stokes算子的最大正则性在非定常Navier-Stokes方程的理论中发挥着关键作用。在本文中,我们考虑非定常Stokes问题的有限元半离散化,并建立$L^q$中($q\in\left(\frac{2N}{N+2},\frac{2N}{N-2}\right)$)最大正则性的离散对应关系。为了证明离散最大正则性,我们引入时间正则化的格林函数。在这个概念的帮助下,我们在没有高斯估计的情况下证明了离散最大正则性。作为一个应用,我们提出了非定常Stokes问题的$L^p(0,T;L^q(\Omega))$型误差估计。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
79+阅读 · 2022年4月3日
专知会员服务
51+阅读 · 2020年12月14日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
einsum is all you needed!
极市平台
1+阅读 · 2022年7月27日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
einsum is all you needed!
极市平台
1+阅读 · 2022年7月27日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员