We consider privacy in the context of streaming algorithms for cardinality estimation. We show that a large class of algorithms all satisfy $\epsilon$-differential privacy, so long as (a) the algorithm is combined with a simple down-sampling procedure, and (b) the cardinality of the input stream is $\Omega(k/\epsilon)$. Here, $k$ is a certain parameter of the sketch that is always at most the sketch size in bits, but is typically much smaller. We also show that, even with no modification, algorithms in our class satisfy $(\epsilon, \delta)$-differential privacy, where $\delta$ falls exponentially with the stream cardinality. Our analysis applies to essentially all popular cardinality estimation algorithms, and substantially generalizes and tightens privacy bounds from earlier works.
翻译:我们从基点估计流算法的角度考虑隐私问题。 我们显示一大批算法都满足了 $\ epsilon $ 差异性隐私, 只要 (a) 算法与简单的下取样程序相结合, 并且 (b) 输入流的基点是$\ omega (k/\ epsilon) $。 这里, $k 是一个素描的参数, 它总是以位数表示草图大小, 但通常要小得多。 我们还显示, 即便不作任何修改, 我们班级的算法也满足 $( epsilon,\ delta) $( delta) 差异性隐私, 即 $\ delta $ 与流基点成指数。 我们的分析基本上适用于所有流行的基点估计算法, 并大量概括和收紧先前工程的隐私界限 。