We show that the locally strongly sober spaces are exactly the coherent sober spaces that are weakly Hausdorff in the sense of Keimel and Lawson. This allows us to describe their Stone duals explicitly. As another application, we show that weak Hausdorffness is a sufficient condition for lenses and of quasi-lenses to form homeomorphic spaces, generalizing previously known results.
翻译:我们发现,当地戒备森严的空间正是Keimel和Lawson意义上的哈斯多夫(Hausdorf)弱弱的清醒空间。 这让我们可以明确地描述他们的石头双重特征。 作为另一个应用,我们证明弱的霍斯多夫夫(Hausdorf)是透镜和准微型融物形成原形空间的充足条件,并推广了先前已知的结果。