Dynamical systems are abstract models of interaction between space and time. They are often used in fields such as physics and engineering to understand complex processes, but due to their general nature, they have found applications for studying computational processes, interaction in multi-agent systems, machine learning algorithms and other computer science related phenomena. In the vast majority of applications, a dynamical system consists of the action of a continuous 'transition function' on a metric space. In this work, we consider decidable formal systems for reasoning about such structures. Spatial logics can be traced back to the 1940's, but our work follows a more dynamic turn that these logics have taken due to two recent developments: the study of the topological mu-calculus, and the the integration of linear temporal logic with logics based on the Cantor derivative. In this paper, we combine dynamic topological logics based on the Cantor derivative and the 'next point in time' operators with an expressively complete fixed point operator to produce a combination of the topological mu-calculus with linear temporal logic. We show that the resulting logics are decidable and have a natural axiomatisation. Moreover, we prove that these logics are complete for interpretations on the Cantor space, the rational numbers, and subspaces thereof.
翻译:动态系统是空间和时间相互作用的抽象模型。 它们通常用于物理和工程学等领域, 以了解复杂的过程, 但是由于它们的一般性质, 它们找到了用于研究计算过程、 多试剂系统中的互动、 机器学习算法和其他计算机科学相关现象的应用。 在绝大多数应用中, 动态系统是由测量空间上连续的“ 过渡功能” 和“ 超时点” 操作器所组成的。 在这项工作中, 我们考虑对此类结构进行推理的可变的正式系统。 空间逻辑可以追溯到1940年代, 但是我们的工作遵循了这些逻辑由于最近两项发展而出现的更动态的转变: 表面学的计算模型研究, 线性时间逻辑与基于Cantor衍生物的逻辑的结合。 在本文中, 我们结合了基于Cantor衍生物衍生物的动态表逻辑和“ 超时点” 操作器, 以及一个明确完整的固定点操作器, 以生成表层学的混合, 和线性时间逻辑。 我们显示, 由此得出的逻辑是可解的逻辑, 并且具有自然的逻辑解释。