We develop a theory of asymptotic efficiency in regular parametric models when data confidentiality is ensured by local differential privacy (LDP). Even though efficient parameter estimation is a classical and well-studied problem in mathematical statistics, it leads to several non-trivial obstacles that need to be tackled when dealing with the LDP case. Starting from a standard parametric model $\mathcal P=(P_\theta)_{\theta\in\Theta}$, $\Theta\subseteq\mathbb R^p$, for the iid unobserved sensitive data $X_1,\dots, X_n$, we establish local asymptotic mixed normality (along subsequences) of the model $$Q^{(n)}\mathcal P=(Q^{(n)}P_\theta^n)_{\theta\in\Theta}$$ generating the sanitized observations $Z_1,\dots, Z_n$, where $Q^{(n)}$ is an arbitrary sequence of sequentially interactive privacy mechanisms. This result readily implies convolution and local asymptotic minimax theorems. In case $p=1$, the optimal asymptotic variance is found to be the inverse of the supremal Fisher-Information $\sup_{Q\in\mathcal Q_\alpha} I_\theta(Q\mathcal P)\in\mathbb R$, where the supremum runs over all $\alpha$-differentially private (marginal) Markov kernels. We present an algorithm for finding a (nearly) optimal privacy mechanism $\hat{Q}$ and an estimator $\hat{\theta}_n(Z_1,\dots, Z_n)$ based on the corresponding sanitized data that achieves this asymptotically optimal variance.


翻译:当本地差异隐私(LDP)确保了数据保密性时,我们在常规参数中开发了一种无线效率理论。尽管高效参数估算是数学统计中一个古老和研究周密的问题,但它导致一些非三轨障碍,在处理 LDP 案件时需要加以解决。 从标准参数模型$\mathcal P=(P ⁇ theta)\\theta\in\theta}美元开始, $\Tata\subseeteq\ mathbrbRp$, iid 未观察到的敏感数据$X_1,\dots, X_, 我们建立本地的无线性混合正常度(长子序列) $ ⁇ (n)\\\\\\ macal=P=(n)\\\\\\\\\\ theta\in\in\ in a\\\\\\\\\\\\\\\\\\\\\\\\\ a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员