Remote sensing applications increasingly rely on deep learning for scene classification. However, their performance is often constrained by the scarcity of labeled data and the high cost of annotation across diverse geographic and sensor domains. While recent vision-language models like CLIP have shown promise by learning transferable representations at scale by aligning visual and textual modalities, their direct application to remote sensing remains suboptimal due to significant domain gaps and the need for task-specific semantic adaptation. To address this critical challenge, we systematically explore prompt learning as a lightweight and efficient adaptation strategy for few-shot remote sensing image scene classification. We evaluate several representative methods, including Context Optimization, Conditional Context Optimization, Multi-modal Prompt Learning, and Prompting with Self-Regulating Constraints. These approaches reflect complementary design philosophies: from static context optimization to conditional prompts for enhanced generalization, multi-modal prompts for joint vision-language adaptation, and semantically regularized prompts for stable learning without forgetting. We benchmark these prompt-learning methods against two standard baselines: zero-shot CLIP with hand-crafted prompts and a linear probe trained on frozen CLIP features. Through extensive experiments on multiple benchmark remote sensing datasets, including cross-dataset generalization tests, we demonstrate that prompt learning consistently outperforms both baselines in few-shot scenarios. Notably, Prompting with Self-Regulating Constraints achieves the most robust cross-domain performance. Our findings underscore prompt learning as a scalable and efficient solution for bridging the domain gap in satellite and aerial imagery, providing a strong foundation for future research in this field.
翻译:暂无翻译