We introduce a scattering covariance matrix which provides non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint covariance across time and scales of complex wavelet coefficients and their modulus. This covariance is nearly diagonalized by a second wavelet transform, which defines the scattering covariance. We show that this set of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. This is analyzed for a variety of processes, including fractional Brownian motions, Poisson, multifractal random walks and Hawkes processes. We prove that self-similar processes have a scattering covariance matrix which is scale invariant. This property can be estimated numerically and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering covariance coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.
翻译:我们引入了一个分散式共变矩阵, 提供非古日时间序列的固定递增模式。 一个复杂的波盘变换, 计算每个比例的信号变异。 不同比例的相依性通过复杂的波子系数及其模量的时和尺度的共变异性来捕捉。 这种共变性几乎被二次波子变换分解, 它定义了分散式共变异性。 我们显示这组瞬时具有多种非古日不同特性的多尺度过程。 这是对多种过程的分析, 包括分数的布朗运动、 Poisson、 多分形随机行走和霍克斯过程。 我们证明, 自我不同的过程有一个分布式的分散式共变异性矩阵, 它在变异性中是规模的。 这个属性可以用数字来估计, 并定义一个宽度自差过程的类别。 我们建立以分散式变异性系数为条件的最大限度的酶模型, 并产生新的时间序列, 并使用微色取样算法 。 应用程序显示高非伽西金融 和时序 。