The noisy intermediate-scale quantum (NISQ) devices enable the implementation of the variational quantum circuit (VQC) for quantum neural networks (QNN). Although the VQC-based QNN has succeeded in many machine learning tasks, the representation and generalization powers of VQC still require further investigation, particularly when the dimensionality reduction of classical inputs is concerned. In this work, we first put forth an end-to-end quantum neural network, namely, TTN-VQC, which consists of a quantum tensor network based on a tensor-train network (TTN) for dimensionality reduction and a VQC for functional regression. Then, we aim at the error performance analysis for the TTN-VQC in terms of representation and generalization powers. We also characterize the optimization properties of TTN-VQC by leveraging the Polyak-Lojasiewicz (PL) condition. Moreover, we conduct the experiments of functional regression on a handwritten digit classification dataset to justify our theoretical analysis.
翻译:噪音中间量子(NISQ)装置使量子神经网络的量子量子电路(VQC)得以实施。虽然基于VQC的QNN成功地完成了许多机器学习任务,但VQC的代表性和一般化能力仍然需要进一步调查,特别是在传统投入的维度减少方面。在这项工作中,我们首先提出了一个端到端的量子神经网络,即TTN-VQC,它由量子振幅网络组成,以用于减少维度和功能回归。然后,我们的目标是对TTN-VQC在代表性和一般化能力方面的错误性能分析。我们还利用Polyak-Lojasiewicz(PL)条件来描述TTN-VQC的优化性能。此外,我们还在手写数字分类数据集上进行了功能回归试验,以证明我们理论分析的正确性能。