Feature engineering, a crucial step of machine learning, aims to extract useful features from raw data to improve data quality. In recent years, great efforts have been devoted to Automated Feature Engineering (AutoFE) to replace expensive human labor. However, existing methods are computationally demanding due to treating AutoFE as a coarse-grained black-box optimization problem over a discrete space. In this work, we propose an efficient gradient-based method called DIFER to perform differentiable automated feature engineering in a continuous vector space. DIFER selects potential features based on evolutionary algorithm and leverages an encoder-predictor-decoder controller to optimize existing features. We map features into the continuous vector space via the encoder, optimize the embedding along the gradient direction induced by the predicted score, and recover better features from the optimized embedding by the decoder. Extensive experiments on classification and regression datasets demonstrate that DIFER can significantly improve the performance of various machine learning algorithms and outperform current state-of-the-art AutoFE methods in terms of both efficiency and performance.


翻译:机械学习的关键一步,即功能工程,目的是从原始数据中提取有用的特征,以提高数据质量。近年来,为取代昂贵的人力劳动,对自动化功能工程(AutoFE)投入了大量努力。然而,由于将AutoFE作为离散空间上粗糙的黑盒优化问题处理,现有的方法在计算上要求很高。在这项工作中,我们提出了一个称为DIFER的高效梯度法,用于在连续矢量空间进行不同的自动特征工程。DIFER根据进化算法选择了潜在的特征,并利用一个编码器-前体-解密器控制器优化现有特征。我们通过编码器绘制连续矢量空间的特征,优化预测分数引出的梯度方向的嵌入,并从解码器优化的嵌入中恢复更好的特征。关于分类和回归数据集的广泛实验表明,DIFER能够大大提高各种机器学习算法的性能,并在效率和性能方面超越现有先进的自动FEU方法。

1
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
52+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
11+阅读 · 2019年4月15日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
9+阅读 · 2019年4月19日
Arxiv
11+阅读 · 2019年4月15日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员