Mobile manipulation tasks such as opening a door, pulling open a drawer, or lifting a toilet lid require constrained motion of the end-effector under environmental and task constraints. This, coupled with partial information in novel environments, makes it challenging to employ classical motion planning approaches at test time. Our key insight is to cast it as a learning problem to leverage past experience of solving similar planning problems to directly predict motion plans for mobile manipulation tasks in novel situations at test time. To enable this, we develop a simulator, ArtObjSim, that simulates articulated objects placed in real scenes. We then introduce SeqIK+$\theta_0$, a fast and flexible representation for motion plans. Finally, we learn models that use SeqIK+$\theta_0$ to quickly predict motion plans for articulating novel objects at test time. Experimental evaluation shows improved speed and accuracy at generating motion plans than pure search-based methods and pure learning methods.
翻译:移动操作任务,如打开门、拉开抽屉或掀开厕所盖子等,需要在环境和任务限制下限制终端效应的动作。 加上新环境中的部分信息,这就使得在试验时采用传统的运动规划方法具有挑战性。 我们的关键洞察力是把它作为一个学习问题, 利用过去解决类似规划问题的经验, 直接预测在试验时在新情况中的移动操作任务的流动计划。 为了能够做到这一点, 我们开发了一个模拟器ArtObjSim, 模拟在真实场景中放置的表达式物体。 然后我们引入 SeqIK+$\theta_0$, 一个快速灵活的运动计划代表器。 最后, 我们学习了使用 SeqIK+$\theta_0$的模型, 来快速预测在试验时表达新物体的动作计划。 实验性评估显示, 生成运动计划的速度和准确度比纯粹的搜索方法和纯学习方法要快。</s>