We study the conformal capacity by using novel computational algorithms based on implementations of the fast multipole method, and analytic techniques. Especially, we apply domain functionals to study the capacities of condensers $(G,E)$ where $G$ is a simply connected domain in the complex plane and $E$ is a compact subset of $G$. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of $E$. Our computational experiments demonstrate, for instance, sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed.
翻译:我们利用基于执行快速多极法的新计算算法和分析技术来研究符合能力。特别是,我们运用域函数来研究冷凝器($(G,E))的能力($(G,E),$($)是复杂平面上一个简单的连接域,$($)是美元($)的紧凑子集。由于顺差,我们的主要工具是双曲几何和功能,例如双曲周界($E$)等。例如,我们的计算实验表明,既有的不平等非常尖锐。对于已知分析解决方案的模型问题,我们观察到非常精确的计算。