** In this paper, we introduce an embedding model, named CapsE, exploring a capsule network to model relationship triples (subject, relation, object). Our CapsE represents each triple as a 3-column matrix where each column vector represents the embedding of an element in the triple. This 3-column matrix is then fed to a convolution layer where multiple filters are operated to generate different feature maps. These feature maps are reconstructed into corresponding capsules which are then routed to another capsule to produce a continuous vector. The length of this vector is used to measure the plausibility score of the triple. Our proposed CapsE obtains better performance than previous state-of-the-art embedding models for knowledge graph completion on two benchmark datasets WN18RR and FB15k-237, and outperforms strong search personalization baselines on SEARCH17. **

ACM/IEEE第23届模型驱动工程语言和系统国际会议，是模型驱动软件和系统工程的首要会议系列，由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来，模型涵盖了建模的各个方面，从语言和方法到工具和应用程序。模特的参加者来自不同的背景，包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛，参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会，并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。
官网链接：http://www.modelsconference.org/

** In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models. **

** Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks. **

** Search personalization aims to tailor search results to each specific user based on the user's personal interests and preferences (i.e., the user profile). Recent research approaches to search personalization by modelling the potential 3-way relationship between the submitted query, the user and the search results (i.e., documents). That relationship is then used to personalize the search results to that user. In this paper, we introduce a novel embedding model based on capsule network, which recently is a breakthrough in deep learning, to model the 3-way relationships for search personalization. In the model, each user (submitted query or returned document) is embedded by a vector in the same vector space. The 3-way relationship is described as a triple of (query, user, document) which is then modeled as a 3-column matrix containing the three embedding vectors. After that, the 3-column matrix is fed into a deep learning architecture to re-rank the search results returned by a basis ranker. Experimental results on query logs from a commercial web search engine show that our model achieves better performances than the basis ranker as well as strong search personalization baselines. **

** Knowledge graph (KG) completion aims to fill the missing facts in a KG, where a fact is represented as a triple in the form of $(subject, relation, object)$. Current KG completion models compel two-thirds of a triple provided (e.g., $subject$ and $relation$) to predict the remaining one. In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset. Furthermore, our model is enabled by the sequential characteristic and thus capable of predicting the whole triples only given one entity. Our experiments demonstrated that our model achieved promising performance on this new triple prediction task. **

** Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding. **

** Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware. **

微信扫码咨询专知VIP会员