Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we introduce a new class of high-dimension constant curvature curves codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency -- block-length is unity under bandwidth expansion mapping. Further, the codes provide within $5$ dB of Shannon's optimal performance theoretically achievable at the lower range of signal-to-noise ratios and BW expansion factors. We exploit the fact that the C3T encoder locus is a geodesic on a flat torus in even dimensions and a generalized helix in odd dimensions to obtain useful code properties and provide noise-reducing projections at the decoder stage. We validate the performance of these codes using fully connected multi-layer perceptrons that approximate maximum likelihood decoders. For the case of independent and identically distributed uniform sources, we show that analog error correction is advantageous over digital coding in terms of required block-lengths needed to match {signal-to-noise ratio, source-to-distortion ratio} tuples. The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.
翻译:最近对未来无线系统的超可变性和低纬度通信(URLLC)的研究引起了对短期轮廓代码的兴趣。 在这方面,我们引入了一种新的高度常态曲线代码,用于对独立连续发酵统一源进行模拟错误校正。 特别是,我们从结结点理论中运用环形功能,对恒定曲曲线的中线规定绝缘管。 然后,我们用超视距内管包装密度优化曲线参数。 由此产生的恒定弯曲曲线管(C3T)代码拥有尽可能最小的延长线 -- 轮廓长度是带宽扩展绘图中的统一值。 此外,代码提供了香农最佳性性性能的5美元 dB,在信号到噪音比率和BW扩张系数的较低范围内,理论上可以实现。 我们利用C3T的电离子电路柱岩柱岩柱在平面上的测深度,在解码阶段提供降低噪音的最大值的预测值。 我们利用这些代码的极值的精确性能, 向后值的精确性判分解点显示我们所需要的最高值。