Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we introduce a new class of high-dimension constant curvature curves codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency -- block-length is unity under bandwidth expansion mapping. Further, the codes provide within $5$ dB of Shannon's optimal performance theoretically achievable at the lower range of signal-to-noise ratios and BW expansion factors. We exploit the fact that the C3T encoder locus is a geodesic on a flat torus in even dimensions and a generalized helix in odd dimensions to obtain useful code properties and provide noise-reducing projections at the decoder stage. We validate the performance of these codes using fully connected multi-layer perceptrons that approximate maximum likelihood decoders. For the case of independent and identically distributed uniform sources, we show that analog error correction is advantageous over digital coding in terms of required block-lengths needed to match {signal-to-noise ratio, source-to-distortion ratio} tuples. The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.


翻译:最近对未来无线系统的超可变性和低纬度通信(URLLC)的研究引起了对短期轮廓代码的兴趣。 在这方面,我们引入了一种新的高度常态曲线代码,用于对独立连续发酵统一源进行模拟错误校正。 特别是,我们从结结点理论中运用环形功能,对恒定曲曲线的中线规定绝缘管。 然后,我们用超视距内管包装密度优化曲线参数。 由此产生的恒定弯曲曲线管(C3T)代码拥有尽可能最小的延长线 -- 轮廓长度是带宽扩展绘图中的统一值。 此外,代码提供了香农最佳性性性能的5美元 dB,在信号到噪音比率和BW扩张系数的较低范围内,理论上可以实现。 我们利用C3T的电离子电路柱岩柱岩柱在平面上的测深度,在解码阶段提供降低噪音的最大值的预测值。 我们利用这些代码的极值的精确性能, 向后值的精确性判分解点显示我们所需要的最高值。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员