We provide a generic technique for constructing families of submodular functions to obtain lower bounds for submodular function minimization (SFM). Applying this technique, we prove that any deterministic SFM algorithm on a ground set of $n$ elements requires at least $\Omega(n \log n)$ queries to an evaluation oracle. This is the first super-linear query complexity lower bound for SFM and improves upon the previous best lower bound of $2n$ given by [Graur et al., ITCS 2020]. Using our construction, we also prove that any (possibly randomized) parallel SFM algorithm, which can make up to $\mathsf{poly}(n)$ queries per round, requires at least $\Omega(n / \log n)$ rounds to minimize a submodular function. This improves upon the previous best lower bound of $\tilde{\Omega}(n^{1/3})$ rounds due to [Chakrabarty et al., FOCS 2021], and settles the parallel complexity of query-efficient SFM up to logarithmic factors due to a recent advance in [Jiang, SODA 2021].


翻译:我们提供了一种通用技术,用于构建具有亚模块功能的家庭,以获得较低范围的小模块功能最小化(SFM) 。 应用这一技术, 我们证明, 任何确定性 SFM 算法,只要在一组美元元素的地面上, 任何确定性 SFM 算法都需要至少$\ Omega (n\log n) 查询一个评价器。 这是第一个用于 SFM 的超级线性查询复杂度较低, 并改进了[ Graur 等人, ITS 2020] 给出的先前最低的 $2n 。 利用我们的构建, 我们还证明, 任何( 可能随机化的) 平行 SFM 算法, 能够满足 $\ mathsfsf{poly} (n) 每轮的查询, 都需要至少$\ Omega (n/\log n) 的回合来最大限度地减少亚模块功能。 这是在先前最低的 $\ tilde ~Omega} (n 1/ 3} 上改进了先前最低约束的两轮, 因为[Chadraby et al., FOS 20211], 并解决了近的S- 201 201 的SFAS 的相近相近复杂因素。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员