A fundamental problem faced in e-commerce is -- how can we satisfy a multi-item order using a small number of fulfillment centers (FC's), while also respecting long-term constraints on how frequently each item should be drawing inventory from each FC? In a seminal paper, Jasin and Sinha (2015) identify and formalize this as a correlated rounding problem, and propose a scheme for \textit{randomly} assigning an FC to each item according to the frequency constraints, so that the assignments are \textit{positively correlated} and not many FC's end up used. Their scheme pays at most $\approx q/4$ times the optimal cost on a $q$-item order. In this paper we provide to our knowledge the first substantial improvement of their scheme, which pays only $1+\ln(q)$ times the optimal cost. We provide another scheme that pays at most $d$ times the optimal cost, when each item is stored in at most $d$ FC's. Our schemes are fast and based on an intuitive new idea -- items wait for FC's to "open" at random times, but observe them on "dilated" time scales. We also provide matching lower bounds of $\Omega(\log q)$ and $d$ respectively for our schemes, by showing that the correlated rounding problem is a non-trivial generalization of Set Cover. Finally, we provide a new LP that solves the correlated rounding problem exactly in time exponential in the number of FC's (but not in $q$).
翻译:电子商务面临的一个根本问题是:我们如何用少量的履行中心(FC's)满足多项目订单,同时尊重对每个项目从每个FC提取清单频率的长期限制?在一份重要论文中,Jasin和Sinha(2015年)将这一问题确定为一个相关的圆形问题并将其正式化,并提议一个根据频率限制为每个项目分配一个FC的计划,这样,这些任务将不是很多FC最终被使用的。它们的计划最多支付美元/approx q/4美元,这是每个项目从每个FC提取清单的最佳成本的两倍。在本文件中,我们向我们提供其计划的第一个实质性改进,只支付1美元(q)乘以最佳成本的倍数。我们提供了另一个支付最高为美元的最佳成本的计划,当每个项目储存在最多为FC的范围之内。我们的计划是快速且基于一个直观的新概念 -- 最多是FC美元- 美元- 的周期- Q/4 支付最优的成本, 并且不确切地显示FC 的“xalalalalalalal” 时间, 提供了我们不固定的“x 美元” 比例。我们提供的“xxxxxxxxxx