We study distributed optimization methods based on the {\em local training (LT)} paradigm: achieving communication efficiency by performing richer local gradient-based training on the clients before parameter averaging. Looking back at the progress of the field, we {\em identify 5 generations of LT methods}: 1) heuristic, 2) homogeneous, 3) sublinear, 4) linear, and 5) accelerated. The 5${}^{\rm th}$ generation, initiated by the ProxSkip method of Mishchenko, Malinovsky, Stich and Richt\'{a}rik (2022) and its analysis, is characterized by the first theoretical confirmation that LT is a communication acceleration mechanism. Inspired by this recent progress, we contribute to the 5${}^{\rm th}$ generation of LT methods by showing that it is possible to enhance them further using {\em variance reduction}. While all previous theoretical results for LT methods ignore the cost of local work altogether, and are framed purely in terms of the number of communication rounds, we show that our methods can be substantially faster in terms of the {\em total training cost} than the state-of-the-art method ProxSkip in theory and practice in the regime when local computation is sufficiently expensive. We characterize this threshold theoretically, and confirm our theoretical predictions with empirical results.


翻译:我们研究基于地方培训(LT)范式的分布优化方法:通过在平均参数之前对客户进行更富的地方梯度培训实现通信效率。回顾实地的进展,我们发现5代LT方法 :(1) 脂质,(2) 均质,(3) 亚线性,(4) 线性,和(5) 加速。由Mishchenko、Malinovsky、Stich和Richt\{a}rik(2022年)的ProxSkip方法发起的5 $ rm th 和 5 美元 的一代。 由Mishchenko、Malinovsky、Stich和Richt\}rik (2022年) 及其分析提出的5 $th_th_th} 优化方法,其特点是第一次理论确认LT是一个通信加速机制。受最近的进展鼓舞,我们为5 $m rm th} =th $th lt 方法的一代贡献,显示有可能进一步利用 $em diff developations compressal roalalalalalalal roalalalalal roal yal yal 和我们理论模型的模型的模型分析结果充分确认。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员