The Expectation Maximisation (EM) algorithm is widely used to optimise non-convex likelihood functions with latent variables. Many authors modified its simple design to fit more specific situations. For instance, the Expectation (E) step has been replaced by Monte Carlo (MC), Markov Chain Monte Carlo or tempered approximations, etc. Most of the well-studied approximations belong to the stochastic class. By comparison, the literature is lacking when it comes to deterministic approximations. In this paper, we introduce a theoretical framework, with state-of-the-art convergence guarantees, for any deterministic approximation of the E step. We analyse theoretically and empirically several approximations that fit into this framework. First, for intractable E-steps, we introduce a deterministic version of MC-EM using Riemann sums. A straightforward method, not requiring any hyper-parameter fine-tuning, useful when the low dimensionality does not warrant a MC-EM. Then, we consider the tempered approximation, borrowed from the Simulated Annealing literature and used to escape local extrema. We prove that the tempered EM verifies the convergence guarantees for a wider range of temperature profiles than previously considered. We showcase empirically how new non-trivial profiles can more successfully escape adversarial initialisations. Finally, we combine the Riemann and tempered approximations into a method that accomplishes both their purposes.
翻译:期待最大化算法( EM) 被广泛用于优化非康维克斯概率功能, 与潜在变量相匹配。 许多作者修改其简单设计, 以适应更具体的情况。 例如, 期待( E) 步骤已经被蒙特卡洛( MC ) 、 Markov 链链 蒙特卡洛( 蒙特卡洛 ) 或温和近似等所取代 。 大多数经过良好研究的近似值属于随机类 。 相比之下, 文献在确定性近似时缺乏。 在本文中, 我们为 E 步的任何确定性近似, 引入了一个理论框架, 并配有最先进的趋同保证。 我们从理论上和实验上分析了若干适合这个框架的近似点。 首先, 对于棘手的 E 步骤, 我们引入了一种确定性 MC- EM 的版本, 使用riemann 等量的确定性版本。 一种简单的方法, 不需要任何超度的微调, 当低维度近似的近似 MC- EM 。 然后, 我们考虑一种调近似的近似近似近似近似性近似, 的近似性近似, 我们从模拟中借用的近似性近似, 的近似性近似,, 并存取的近似性近似性近似性近似性近似性近似性近似性近似性近似性, 我们证明, 我们证明比以往的近似性地的近似性地演化的近似性地演化的近似性地演进。