DNA-based data storage has been attracting significant attention due to its extremely high data storage density, low power consumption, and long duration compared to conventional data storage media. Despite the recent advancements in DNA data storage technology, significant challenges remain. In particular, various types of errors can occur during the processes of DNA synthesis, storage, and sequencing, including substitution errors, insertion errors, and deletion errors. Furthermore, the entire oligo may be lost. In this work, we report a DNA-based data storage architecture that incorporates efficient channel coding schemes, including different types of error-correcting codes (ECCs) and constrained codes, for both the inner coding and outer coding for the DNA data storage channel. We also carried out large scale experiments to validate our proposed DNA-based data storage architecture. Specifically, 1.61 and 1.69 MB data were encoded into 30,000 oligos each, with information densities of 1.731 and 1.815, respectively. It has been found that the stored information can be fully recovered without any error at average coverages of 4.5 and 6.0, respectively. This experiment achieved the highest net information density and lowest coverage among existing DNA-based data storage experiments (with standard DNA), with data recovery rates and coverage approaching theoretical optima.
翻译:暂无翻译