Recommending appropriate tags to items can facilitate content organization, retrieval, consumption and other applications, where hybrid tag recommender systems have been utilized to integrate collaborative information and content information for better recommendations. In this paper, we propose a multi-auxiliary augmented collaborative variational auto-encoder (MA-CVAE) for tag recommendation, which couples item collaborative information and item multi-auxiliary information, i.e., content and social graph, by defining a generative process. Specifically, the model learns deep latent embeddings from different item auxiliary information using variational auto-encoders (VAE), which could form a generative distribution over each auxiliary information by introducing a latent variable parameterized by deep neural network. Moreover, to recommend tags for new items, item multi-auxiliary latent embeddings are utilized as a surrogate through the item decoder for predicting recommendation probabilities of each tag, where reconstruction losses are added in the training phase to constrict the generation for feedback predictions via different auxiliary embeddings. In addition, an inductive variational graph auto-encoder is designed where new item nodes could be inferred in the test phase, such that item social embeddings could be exploited for new items. Extensive experiments on MovieLens and citeulike datasets demonstrate the effectiveness of our method.


翻译:推荐项目的适当标签可以促进内容组织、检索、消费和其他应用,在这些应用中,混合标签建议系统已经用于整合合作信息和内容信息,以便提出更好的建议。在本文件中,我们提议为标签建议建立一个多子增强合作性变异自动编码器(MA-CVAE),通过界定基因化过程,将项目的合作信息和项目多子信息,即内容和社会图,作为项目的合作信息和项目多子信息(即内容和社会图)作为代号,用来预测每个标签的建议概率。具体地说,模型利用变异自动编码器(VAE)从不同项目辅助信息中学习深潜嵌入信息,这可以通过引入深层神经网络的潜伏变量来对每一种辅助信息进行基因化传播。此外,为了推荐新项目标签的标签标签标签,通过项目解码器将多子潜在潜在嵌入用作一种代号,用以预测每个标签的建议概率,即内容和社会图,在培训阶段中增加损失,以限制生成通过不同辅助嵌入式嵌入的反馈预测。此外,还可以为每个辅助变异图形自动编码图,用于新的实验阶段,在新项目上进行新的磁性实验。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员