Relevant recommendation is a special recommendation scenario which provides relevant items when users express interests on one target item (e.g., click, like and purchase). Besides considering the relevance between recommendations and trigger item, the recommendations should also be diversified to avoid information cocoons. However, existing diversified recommendation methods mainly focus on item-level diversity which is insufficient when the recommended items are all relevant to the target item. Moreover, redundant or noisy item features might affect the performance of simple feature-aware recommendation approaches. Faced with these issues, we propose a Feature Disentanglement Self-Balancing Re-ranking framework (FDSB) to capture feature-aware diversity. The framework consists of two major modules, namely disentangled attention encoder (DAE) and self-balanced multi-aspect ranker. In DAE, we use multi-head attention to learn disentangled aspects from rich item features. In the ranker, we develop an aspect-specific ranking mechanism that is able to adaptively balance the relevance and diversity for each aspect. In experiments, we conduct offline evaluation on the collected dataset and deploy FDSB on KuaiShou app for online A/B test on the function of relevant recommendation. The significant improvements on both recommendation quality and user experience verify the effectiveness of our approach.


翻译:有关的建议是一种特别建议方案,在用户对一个目标项目表示兴趣时,提供相关项目(例如,点击、类似和购买);除了考虑建议和触发项目的相关性外,建议也应多样化,以避免信息库;然而,现有的多样化建议方法主要侧重于项目层次的多样性,而当建议项目都与目标项目相关时,这种多样性是不够的;此外,多余或吵闹的项目特征可能影响简单特异觉建议方法的性能。面对这些问题,我们提议一个特色分解自相矛盾的自我平衡重新排位框架(FDSB),以捕捉特征认知的多样性。框架由两个主要模块组成,即分解的注意编码器(DAE)和自我平衡的多层排位器。在DAE中,我们使用多头关注来了解丰富项目特征的分解方面。在排位时,我们开发一个能适应性地平衡每个方面相关性和多样性的分级机制。在实验中,我们对所收集的数据集进行离线评价,并在KuaiSho软件中部署FDSB,用于在线测试A/B有关改进用户质量的建议。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员