Relevant recommendation is a special recommendation scenario which provides relevant items when users express interests on one target item (e.g., click, like and purchase). Besides considering the relevance between recommendations and trigger item, the recommendations should also be diversified to avoid information cocoons. However, existing diversified recommendation methods mainly focus on item-level diversity which is insufficient when the recommended items are all relevant to the target item. Moreover, redundant or noisy item features might affect the performance of simple feature-aware recommendation approaches. Faced with these issues, we propose a Feature Disentanglement Self-Balancing Re-ranking framework (FDSB) to capture feature-aware diversity. The framework consists of two major modules, namely disentangled attention encoder (DAE) and self-balanced multi-aspect ranker. In DAE, we use multi-head attention to learn disentangled aspects from rich item features. In the ranker, we develop an aspect-specific ranking mechanism that is able to adaptively balance the relevance and diversity for each aspect. In experiments, we conduct offline evaluation on the collected dataset and deploy FDSB on KuaiShou app for online A/B test on the function of relevant recommendation. The significant improvements on both recommendation quality and user experience verify the effectiveness of our approach.
翻译:有关的建议是一种特别建议方案,在用户对一个目标项目表示兴趣时,提供相关项目(例如,点击、类似和购买);除了考虑建议和触发项目的相关性外,建议也应多样化,以避免信息库;然而,现有的多样化建议方法主要侧重于项目层次的多样性,而当建议项目都与目标项目相关时,这种多样性是不够的;此外,多余或吵闹的项目特征可能影响简单特异觉建议方法的性能。面对这些问题,我们提议一个特色分解自相矛盾的自我平衡重新排位框架(FDSB),以捕捉特征认知的多样性。框架由两个主要模块组成,即分解的注意编码器(DAE)和自我平衡的多层排位器。在DAE中,我们使用多头关注来了解丰富项目特征的分解方面。在排位时,我们开发一个能适应性地平衡每个方面相关性和多样性的分级机制。在实验中,我们对所收集的数据集进行离线评价,并在KuaiSho软件中部署FDSB,用于在线测试A/B有关改进用户质量的建议。