Deep neural networks (DNNs) have been used to model complex optimization problems in many applications, yet have difficulty guaranteeing solution optimality and feasibility, despite training on large datasets. Training a NN as a surrogate optimization solver amounts to estimating a global solution function that maps varying problem input parameters to the corresponding optimal solutions. Work in multiparametric programming (mp) has shown that solutions to quadratic programs (QP) are piece-wise linear functions of the parameters, and researchers have suggested leveraging this property to model mp-QP using NN with ReLU activation functions, which also exhibit piecewise linear behaviour. This paper proposes a NN modeling approach and learning algorithm that discovers the exact closed-form solution to QP with linear constraints, by analytically deriving NN model parameters directly from the problem coefficients without training. Whereas generic DNN cannot guarantee accuracy outside the training distribution, the closed-form NN model produces exact solutions for every discovered critical region of the solution function. To evaluate the closed-form NN model, it was applied to DC optimal power flow problems in electricity management. In terms of Karush-Kuhn-Tucker (KKT) optimality and feasibility of solutions, it outperformed a classically trained DNN and was competitive with, or outperformed, a commercial analytic solver (Gurobi) at far less computational cost. For a long-range energy planning problem, it was able to produce optimal and feasible solutions for millions of input parameters within seconds.


翻译:深度神经网络(DNNs)已被广泛应用于建模复杂优化问题,但即便在大规模数据集上训练,仍难以保证解的全局最优性与可行性。将神经网络训练为替代优化求解器,本质上是对全局解函数进行估计,该函数将变化的输入参数映射至对应的最优解。多参数规划(mp)的研究表明,二次规划(QP)的解是参数的分段线性函数,学者们建议利用这一特性,通过具有ReLU激活函数(同样呈现分段线性行为)的神经网络来建模mp-QP。本文提出一种神经网络建模方法与学习算法,通过直接从问题系数解析推导神经网络模型参数(无需训练),从而发现带线性约束二次规划的精确闭式解。通用DNN无法保证在训练分布外的准确性,而闭式神经网络模型能在解函数的每个已发现临界区域生成精确解。为评估该闭式神经网络模型,我们将其应用于电力管理中的直流最优潮流问题。在解的Karush-Kuhn-Tucker(KKT)最优性与可行性方面,该模型优于经典训练的DNN,并以远低于商业解析求解器(Gurobi)的计算成本,达到或超越了其性能。针对长期能源规划问题,该模型能在数秒内为百万级输入参数生成最优且可行的解。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员