Precise segmentation of objects is an important problem in tasks like class-agnostic object proposal generation or instance segmentation. Deep learning-based systems usually generate segmentations of objects based on coarse feature maps, due to the inherent downsampling in CNNs. This leads to segmentation boundaries not adhering well to the object boundaries in the image. To tackle this problem, we introduce a new superpixel-based refinement approach on top of the state-of-the-art object proposal system AttentionMask. The refinement utilizes superpixel pooling for feature extraction and a novel superpixel classifier to determine if a high precision superpixel belongs to an object or not. Our experiments show an improvement of up to 26.0% in terms of average recall compared to original AttentionMask. Furthermore, qualitative and quantitative analyses of the segmentations reveal significant improvements in terms of boundary adherence for the proposed refinement compared to various deep learning-based state-of-the-art object proposal generation systems.
翻译:精确的天体分割是类类别对象建议生成或实例分割等任务中的一个重要问题。 深深学习系统通常会根据粗粗地貌图生成物体分割, 这是因为有线电视新闻网内固有的下取样方法。 这导致断裂界限与图像中的对象界限不相符。 为了解决这个问题, 我们在最先进的天体建议系统“ 注意Mask ” 上方引入了基于超级像素的精细化方法。 精细的改进利用超级像素集合来提取地物, 以及一个新的超级像素分类器来确定高精度超级像素是否属于对象。 我们的实验显示,与原始的“ 注意Mask” 相比,平均召回率提高了高达26.0%。 此外, 对分割的定性和定量分析显示,与各种深学的状态物体生成系统相比, 拟议的精细化的精细化在边界坚持度方面有很大改进。