Recently, several weakly supervised learning methods have been devoted to utilize bounding box supervision for training deep semantic segmentation models. Most existing methods usually leverage the generic proposal generators (\eg, dense CRF and MCG) to produce enhanced segmentation masks for further training segmentation models. These proposal generators, however, are generic and not specifically designed for box-supervised semantic segmentation, thereby leaving some leeway for improving segmentation performance. In this paper, we aim at seeking for a more accurate learning-based class-agnostic pseudo mask generator tailored to box-supervised semantic segmentation. To this end, we resort to a pixel-level annotated auxiliary dataset where the class labels are non-overlapped with those of the box-annotated dataset. For learning pseudo mask generator from the auxiliary dataset, we present a bi-level optimization formulation. In particular, the lower subproblem is used to learn box-supervised semantic segmentation, while the upper subproblem is used to learn an optimal class-agnostic pseudo mask generator. The learned pseudo segmentation mask generator can then be deployed to the box-annotated dataset for improving weakly supervised semantic segmentation. Experiments on PASCAL VOC 2012 dataset show that the learned pseudo mask generator is effective in boosting segmentation performance, and our method can further close the performance gap between box-supervised and fully-supervised models. Our code will be made publicly available at https://github.com/Vious/LPG_BBox_Segmentation .
翻译:最近,一些监督不力的学习方法被用于使用捆绑箱监督来培训深层语义分解模型。 大多数现有方法通常利用通用建议生成器(\ eg, 密集的通用报告格式和 MCG) 来生成强化的分解面罩, 用于进一步培训分解模型。 但是, 这些建议生成器是通用的, 而不是专门设计用于框监督的语义分解, 从而留下一些改善分解性能的回旋余地。 本文中, 我们的目标是寻求一种更精确的基于学习的类比级假假面罩生成器, 专门为箱监督的语义分解模型设计。 为此, 我们使用平面的平面图像级辅助数据集通常使用一个附加说明的辅助数据集。 学习的伪分解器在2012年的纸质分解器中, 将演示的磁性能演示的磁性能分析器, 在2012年的纸质化纸质分析器中, 将演示的纸质分解/ 演示工具, 将用来学习箱式的语义结构 。