While modern image translation techniques can create photorealistic synthetic images, they have limited style controllability, thus could suffer from translation errors. In this work, we show that the activation function is one of the crucial components in controlling the direction of image synthesis. Specifically, we explicitly demonstrated that the slope parameters of the rectifier could change the data distribution and be used independently to control the direction of translation. To improve the style controllability, two simple but effective techniques are proposed, including Adaptive ReLU (AdaReLU) and structural adaptive function. The AdaReLU can dynamically adjust the slope parameters according to the target style and can be utilized to increase the controllability by combining with Adaptive Instance Normalization (AdaIN). Meanwhile, the structural adaptative function enables rectifiers to manipulate the structure of feature maps more effectively. It is composed of the proposed structural convolution (StruConv), an efficient convolutional module that can choose the area to be activated based on the mean and variance specified by AdaIN. Extensive experiments show that the proposed techniques can greatly increase the network controllability and output diversity in style-based image translation tasks.


翻译:虽然现代图像翻译技术可以产生符合现实的合成图像,但它们的风格可控性有限,因此可能会受到翻译错误的影响。 在这项工作中,我们表明激活功能是控制图像合成方向的关键组成部分之一。 具体地说, 我们明确表明, 校正器的斜坡参数可以改变数据分布, 并独立地用于控制翻译方向。 为了改进风格可控性, 提出了两种简单但有效的技术, 包括适应性ReLU(AdareLU)和结构适应功能。 AdaRELU可以根据目标样式动态调整斜坡参数, 并且可以通过与适应性正态正常化( AdaIN) 相结合来提高可控性。 同时, 结构适应性功能使校准能够更有效地操纵地貌地图的结构。 它由拟议的结构演进( Stru Connur) 组成, 一个高效的革命模块, 可以根据AdaIN 的平均值和差异选择激活区域。 广泛的实验显示, 拟议的技术可以大大提高网络控制性和基于风格图像翻译任务的输出多样性。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2019年8月7日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员