We develop a general framework for statistical inference with the 1-Wasserstein distance. Recently, the Wasserstein distance has attracted considerable attention and has been widely applied to various machine learning tasks because of its excellent properties. However, hypothesis tests and a confidence analysis for the Wasserstein distance have not been established in a general multivariate setting. This is because the limit distribution of the empirical distribution with the Wasserstein distance is unavailable without strong restriction. To address this problem, in this study, we develop a novel non-asymptotic Gaussian approximation for the empirical 1-Wasserstein distance. Using the approximation method, we develop a hypothesis test and confidence analysis for the empirical 1-Wasserstein distance. Additionally, we provide a theoretical guarantee and an efficient algorithm for the proposed approximation. Our experiments validate its performance numerically.
翻译:我们为1-Wasserstein距离的统计推理制定了一个总体框架。最近,瓦塞尔斯坦距离因其优良的特性,吸引了相当多的注意力,并被广泛应用于各种机器学习任务。然而,在一般的多变环境下,瓦色尔斯坦距离的假设测试和信心分析尚未确立。这是因为与瓦塞尔斯坦距离的经验分布的有限分布没有严格的限制。为了解决这个问题,我们在本研究中为经验1-Wasserstein距离开发了一个新的非被动的Gaussian近似值。我们使用近似法,为经验1-Wasserstein距离开发了假设测试和信心分析。此外,我们为拟议的近似提供了理论保证和有效的算法。我们的实验从数字上验证了它的性能。