Self-adjusting networks (SANs) have the ability to adapt to communication demand by dynamically adjusting the workload (or demand) embedding, i.e., the mapping of communication requests into the network topology. SANs can thus reduce routing costs for frequently communicating node pairs by paying a cost for adjusting the embedding. This is particularly beneficial when the demand has structure, which the network can adapt to. Demand can be represented in the form of a demand graph, which is defined by the set of network nodes (vertices) and the set of pairwise communication requests (edges). Thus, adapting to the demand can be interpreted by embedding the demand graph to the network topology. This can be challenging both when the demand graph is known in advance (offline) and when it revealed edge-by-edge (online). The difficulty also depends on whether we aim at constructing a static topology or a dynamic (self-adjusting) one that improves the embedding as more parts of the demand graph are revealed. Yet very little is known about these self-adjusting embeddings. In this paper, the network topology is restricted to a line and the demand graph to a ladder graph, i.e., a $2^n$ grid, including all possible subgraphs of the ladder. We present an online self-adjusting network that matches the known lower bound asymptotically and is $12$-competitive in terms of request cost. As a warm up result, we present an asymptotically optimal algorithm for the cycle demand graph. We also present an oracle-based algorithm for an arbitrary demand graph that has a constant overhead.


翻译:自调整网络(SANs)有能力通过动态调整嵌入的工作量(或需求)来适应通信需求,从而通过动态调整嵌入(或需求)的工作量(或需求)来适应通信需求。 因此, SANs可以通过支付调整嵌入的成本来降低经常交流节点对对配的路径成本。 当需求有结构时,这特别有益, 网络可以适应。 需求可以以需求图的形式表现, 由一组网络节点( 顶端) 和一组对称通信请求( 顶端) 来定义。 因此, 适应需求可以通过将需求图表嵌入网络表来解释。 当需求图为预先( offline) 和显示边际( 在线) 时, 这可能会带来挑战。 当需求图旨在构建静态的表或动态( 自我调整) 以需求图的更多部分来改进嵌入。 然而对于这些自我调整的直线, 也鲜为人们所知, 将需求图的自调整结果嵌入网络的直线。 在本文中, 网络的顶端值中, 我们的底端值将一个直系为直系的直径直径直径,,, 直系为直系的直系的直系为直系的直系为直系为直系,, 直系的直系为直系为直系为直系的直系为直系为直系为直系为直系。,,,, 直系为直系直系直系为直系为直系为直系的直系直系为直系为直系为直系直系直系直系直系直系。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员