In this paper, we study a large population game with heterogeneous dynamics and cost functions solving a consensus problem. Moreover, the agents have communication constraints which appear as: (1) an Additive-White Gaussian Noise (AWGN) channel, and (2) asynchronous data transmission via a fixed scheduling policy. Since the complexity of solving the game increases with the number of agents, we use the Mean-Field Game paradigm to solve it. Under standard assumptions on the information structure of the agents, we prove that the control of the agent in the MFG setting is free of the dual effect. This allows us to obtain an equilibrium control policy for the generic agent, which is a function of only the local observation of the agent. Furthermore, the equilibrium mean-field trajectory is shown to follow linear dynamics, hence making it computable. We show that in the finite population game, the equilibrium control policy prescribed by the MFG analysis constitutes an $\epsilon$-Nash equilibrium, where $\epsilon$ tends to zero as the number of agents goes to infinity. The paper is concluded with simulations demonstrating the performance of the equilibrium control policy.
翻译:在本文中,我们研究了一个庞大的人口游戏,其动态和成本功能各异,可以解决一个共识问题。此外,这些代理商的通信限制表现为:(1) Aditive-White Gaussian Noise (AWGN) 频道,和(2) 通过固定的日程安排政策无同步数据传输。由于解决游戏的复杂性随着代理商数量的增加,我们使用“平均场游戏”范式来解决它。根据关于代理商信息结构的标准假设,我们证明MFG环境中对代理商的控制是不受双重影响的。这使我们能够获得通用代理商的平衡控制政策,而通用代理商只是当地观测的功能。此外,平衡平均场轨迹显示遵循线性动态,因此可以令人接受。我们表明,在有限的人口游戏中,MFG分析规定的平衡控制政策是美元-纳什平衡,在代理商数量到极限时,美元/epsilon往往为零。文件结尾是模拟显示平衡控制政策的执行情况。