This work concerns controlling the false discovery rate (FDR) in networks under communication constraints. We present sample-and-forward, a flexible and communication-efficient version of the Benjamini-Hochberg (BH) procedure for multihop networks with general topologies. Our method evidences that the nodes in a network do not need to communicate p-values to each other to achieve a decent statistical power under the global FDR control constraint. Consider a network with a total of $m$ p-values, our method consists of first sampling the (empirical) CDF of the p-values at each node and then forwarding $\mathcal{O}(\log m)$ bits to its neighbors. Under the same assumptions as for the original BH procedure, our method has both the provable finite-sample FDR control as well as competitive empirical detection power, even with a few samples at each node. We provide an asymptotic analysis of power under a mixture model assumption on the p-values.
翻译:这项工作涉及在通信受限的网络中控制虚假的发现率(FDR) 。 我们为多霍网络提供了一种灵活和沟通高效的Benjami-Hochberg(BH) 程序样本版本。 我们的方法证明,网络中的节点不需要相互交流p-value 来在全球FDR控制限制下实现一个体面的统计力量。 考虑一个总价值为百万美元的网络, 我们的方法包括首先对每个节点的p值(经验性)CDF进行取样, 然后向邻居转发$\macal{O}(log m) bit。 在与原始BH程序相同的假设下,我们的方法既有可允许的限量FDR控制,也有竞争性的经验检测能力,即使每个节点都有少量样本。 我们根据对P-value的混合模型假设,对权力进行了无损分析。