A promising approach for scalable Gausian processes (GPs) is the Karhunen-Lo\`eve (KL) decomposition, in which the GP kernel is represented by a set of basis functions which are the eigenfunctions of the kernel operator. Such decomposed kernels have the potential to be very fast, and do not depend on the selection of a reduced set of inducing points. However KL decompositions lead to high dimensionality, and variable selection becomes paramount. This paper reports a new method of forward variable selection, enabled by the ordered nature of the basis functions in the KL expansion of the Bayesian Smoothing Spline ANOVA kernel (BSS-ANOVA), coupled with fast Gibbs sampling in a fully Bayesian approach. It quickly and effectively limits the number of terms, yielding a method with competitive accuracies, training and inference times for tabular datasets of low feature set dimensionality. The inference speed and accuracy makes the method especially useful for dynamic systems identification, by modeling the dynamics in the tangent space as a static problem, then integrating the learned dynamics using a high-order scheme. The methods are demonstrated on two dynamic datasets: a `Susceptible, Infected, Recovered' (SIR) toy problem, with the transmissibility used as forcing function, along with the experimental `Cascaded Tanks' benchmark dataset. Comparisons on the static prediction of time derivatives are made with a random forest (RF), a residual neural network (ResNet), and the Orthogonal Additive Kernel (OAK) inducing points scalable GP, while for the timeseries prediction comparisons are made with LSTM and GRU recurrent neural networks (RNNs) along with a number of basis set / optimizer combinations within the SINDy package.


翻译:可伸缩高斯进程(GPs)有希望的方法是 Karhunen- Lo ⁇ ⁇ éeve (KL) 分解, GP内核由一组基础函数代表,这些函数是内核操作员的机能。 这种分解的内核具有非常快的潜力, 并不取决于选择一组降低的引力点。 然而, KL 分解会导致高维度, 变量选择变得至关重要。 本文报告了一种前变变量选择的新方法, 由Bayesian Splain ANOVA 内核( BS- ANOVA) 的KLL 基函数扩展中基础函数的定序性质所促成, 一组基础函数代表一系列基础函数, 它们是内核流操作操作员。 快速而有效地限制条件数量, 产生一套具有竞争性的导力、 培训和推导力的系统( RVic) 的元分立值组合( 推算速度和精确度使该方法对动态系统识别特别有用, 以ByeS 的基值为模型, 在轨迹变动的轨中, 数据中, 使用一个已显示的机的机变压的机变压的机的机能的机数据, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员