Dequantized algorithms show that quantum computers do not have exponential speedups for many linear algebra problems in terms of time and query complexity. In this work, we show that quantum computers can have exponential speedups in terms of communication complexity for some fundamental linear algebra problems. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. As a result, for many linear algebra problems where quantum computers lose exponential speedups in terms of time and query complexity, it is possible to have exponential speedups in terms of communication complexity.
翻译:量化的算法显示,量子计算机在时间和查询复杂度方面没有许多线性代数问题的指数加速度。 在这项工作中,我们显示,量子计算机在通信复杂性方面可以在某些基本的线性代数问题中具有指数加速度。我们主要侧重于解决线性回归和汉密尔顿模拟。在量子案例中,任务是为结果的量子状态做准备。在古典案例中,为了进行公正的比较,任务是从结果中进行抽样。我们在两党和多党模式中调查这两个问题,提出接近最佳的量子协议,并证明量子/古典的下限。在这个过程中,我们提出了量子值转换的有效量子量子协议,这是设计量子算法的强大技术。因此,对于许多量子计算机在时间和查询复杂度上丧失指数性加速度的问题,有可能在通信复杂度方面有指数性加速度。