Task allocation in heterogeneous multi-agent teams often requires reasoning about multi-dimensional agent traits (i.e., capabilities) and the demands placed on them by tasks. However, existing methods tend to ignore the fact that not all traits equally contribute to a given task. Ignoring such inherent preferences or relative importance can lead to unintended sub-optimal allocations of limited agent resources that do not necessarily contribute to task success. Further, reasoning over a large number of traits can incur a hefty computational burden. To alleviate these concerns, we propose an algorithm to infer task-specific trait preferences implicit in expert demonstrations. We leverage the insight that the consistency with which an expert allocates a trait to a task across demonstrations reflects the trait's importance to that task. Inspired by findings in psychology, we account for the fact that the inherent diversity of a trait in the dataset influences the dataset's informativeness and, thereby, the extent of the inferred preference or the lack thereof. Through detailed numerical simulations and evaluations of a publicly-available soccer dataset (FIFA 20), we demonstrate that we can successfully infer implicit trait preferences and that accounting for the inferred preferences leads to more computationally efficient and effective task allocation, compared to a baseline approach that treats all traits equally.
翻译:不同多试剂小组的任务分配往往要求对多维剂特性(即能力)和任务对其提出的要求进行推理,但现有方法往往忽视并非所有特性都同样有助于某一任务这一事实,忽视这种内在偏好或相对重要性可能导致不尽人意地分配有限的试剂资源,而这种分配不一定有助于任务的成功。此外,大量特性的推理可能产生沉重的计算负担。为了减轻这些顾虑,我们提出一种算法,以推断专家演示所隐含的特定任务特点偏好。我们利用这种洞察力,即专家在各种示范中分配某一任务的特点时,其一致性反映了特征对某项任务的重要性。根据心理学的研究结果,我们考虑到以下事实,即数据集的固有特性会影响数据集的信息性,从而影响推断的偏好程度或缺乏。通过对公开提供的足球数据集(FIFA 20)进行详细的数字模拟和评估,我们证明我们能够成功地推导出隐含的偏好性选择,并计算出所有推断性基准分配方法的会计结果,从而更有效地计算。