The recent thought-provoking paper by Hansen [2022, Econometrica] proved that the Gauss-Markov theorem continues to hold without the requirement that competing estimators are linear in the vector of outcomes. Despite the elegant proof, it was shown by the authors and other researchers that the main result in the earlier version of Hansen's paper does not extend the classic Gauss-Markov theorem because no nonlinear unbiased estimator exists under his conditions. To address the issue, Hansen [2022] added statements in the latest version with new conditions under which nonlinear unbiased estimators exist. Motivated by the lively discussion, we study a fundamental problem: what estimators are unbiased for a given class of linear models? We first review a line of highly relevant work dating back to the 1960s, which, unfortunately, have not drawn enough attention. Then, we introduce notation that allows us to restate and unify results from earlier work and Hansen [2022]. The new framework also allows us to highlight differences among previous conclusions. Lastly, we establish new representation theorems for unbiased estimators under different restrictions on the linear model, allowing the coefficients and covariance matrix to take only a finite number of values, the higher moments of the estimator and the dependent variable to exist, and the error distribution to be discrete, absolutely continuous, or dominated by another probability measure. Our results substantially generalize the claims of parallel commentaries on Hansen [2022] and a remarkable result by Koopmann [1982].
翻译:汉森[2022, Economica]最近发人深思的论文《Hansen [2022, Economica] 证明,高斯-马尔科夫理论继续坚持,而没有要求竞相的估算值在结果矢量中是线性。尽管证据优雅,但作者和其他研究人员显示,早期韩森论文的主要结果并未扩展经典高斯-马尔科夫理论值,因为在其条件下不存在非线性不偏倚的估算值。为了解决这个问题,汉森[2022] 在最新版本中添加了句子,增加了非线性不偏倚估计值存在的新条件。受热烈讨论的激励,我们研究了一个根本问题:对某类线性模型而言,什么是不带偏见的?我们首先审查了早在1960年代就具有高度相关性的工作线,但不幸的是,没有引起足够的注意。然后,我们引入了能够重述和统一先前工作结果的注释和汉森[2022] 。新的框架还使我们得以突出前几次结论之间的差异。最后,我们建立了新的描述性、更高级估计值结果,我们为直为直为直为直观的模型和卡度的模型和卡定的模型,根据不同的模型,只有不同模型的模型和卡质的模型的模型的模型,只有不同的模型的模型,只有不同的模型的模型的模型,只有不同的模型的基底的基底的系数,只有不同的基底的测量度,我们。