The problem of permutation-invariant learning over set representations is particularly relevant in the field of multi-agent systems -- a few potential applications include unsupervised training of aggregation functions in graph neural networks (GNNs), neural cellular automata on graphs, and prediction of scenes with multiple objects. Yet existing approaches to set encoding and decoding tasks present a host of issues, including non-permutation-invariance, fixed-length outputs, reliance on iterative methods, non-deterministic outputs, computationally expensive loss functions, and poor reconstruction accuracy. In this paper we introduce a Permutation-Invariant Set Autoencoder (PISA), which tackles these problems and produces encodings with significantly lower reconstruction error than existing baselines. PISA also provides other desirable properties, including a similarity-preserving latent space, and the ability to insert or remove elements from the encoding. After evaluating PISA against baseline methods, we demonstrate its usefulness in a multi-agent application. Using PISA as a subcomponent, we introduce a novel GNN architecture which serves as a generalised communication scheme, allowing agents to use communication to gain full observability of a system.
翻译:在多试剂系统领域,变异式的学习问题特别重要 -- -- 一些潜在的应用包括:在图形神经网络(GNNs)中,对图形神经网络(GNNs)中的聚合功能进行不受监督的培训,在图形上对神经细胞自动图进行培训,对多天体的场景进行预测。然而,现有的编码和解码任务设置方法提出了许多问题,包括非变异性、固定长度产出、对迭代方法的依赖、非定式产出、计算成本昂贵的损失功能和重建精确度差。在本文件中,我们引入了一种变异性-异性设置自动编码(PISA),以解决这些问题并产生比现有基线差得多的编码。 PISA还提供了其他可取的特性,包括类似性-保留潜在空间,以及从编码中插入或删除元素的能力。在对PISA进行基线方法评估后,我们展示了其在多试剂应用中的效用。我们使用PISAA作为子组件,我们引入了新型GNNN结构,作为一般通信计划,允许代理人使用通信系统获得完全观测能力。</s>