Variational Inference (VI) is an attractive alternative to Markov Chain Monte Carlo (MCMC) due to its computational efficiency in the case of large datasets and/or complex models with high-dimensional parameters. However, evaluating the accuracy of variational approximations remains a challenge. Existing methods characterize the quality of the whole variational distribution, which is almost always poor in realistic applications, even if specific posterior functionals such as the component-wise means or variances are accurate. Hence, these diagnostics are of practical value only in limited circumstances. To address this issue, we propose the TArgeted Diagnostic for Distribution Approximation Accuracy (TADDAA), which uses many short parallel MCMC chains to obtain lower bounds on the error of each posterior functional of interest. We also develop a reliability check for TADDAA to determine when the lower bounds should not be trusted. Numerical experiments validate the practical utility and computational efficiency of our approach on a range of synthetic distributions and real-data examples, including sparse logistic regression and Bayesian neural network models.
翻译:由于在大型数据集和(或)具有高维参数的复杂模型中,这种分析效率很高,因此对Markov链条蒙特卡洛(MCMC)来说是一种有吸引力的替代物(VI),因为它的计算效率很高。然而,评估变异近似的准确性仍是一项挑战。现有的方法特征是整个变异分布的质量,在现实应用中,这种质量几乎总是很差,即使某些后继功能,例如组件手段或差异是准确的。因此,这些诊断只有在有限的情况下才具有实际价值。为了解决这一问题,我们建议采用配送近似相近的精确度分析(TADADAA),使用许多短平行的MMC链,以获得关于每个相关后端功能错误的较低界限。我们还为TADADA开发了一个可靠性检查,以确定何时不应信任较低界限。数字实验验证了我们在一系列合成分布和真实数据实例方面的做法的实际效用和计算效率,包括低度的物流回归和拜斯神经网络模型。</s>