Recent development in high-dimensional statistical inference has necessitated concentration inequalities for a broader range of random variables. We focus on sub-Weibull random variables, which extend sub-Gaussian or sub-exponential random variables to allow heavy-tailed distributions. This paper presents concentration inequalities for independent sub-Weibull random variables with finite Generalized Bernstein-Orlicz norms, providing generalized Bernstein's inequalities and Rosenthal-type moment bounds. The tightness of the proposed bounds is shown through lower bounds of the concentration inequalities obtained via the Paley-Zygmund inequality. The results are applied to a graphical model inference problem, improving previous sample complexity bounds.
翻译:高维统计推论的最近发展使得更广大随机变量的集中不平等成为必要。 我们侧重于次Weibull随机变量,这些变量扩展了亚Gausian或亚Explical随机变量,以允许重尾分布。本文展示了独立的次Weibull随机变量的集中不平等,后者具有有限的通用Bernstein-Orlicz规范,提供了普遍的Bernstein的不平等和罗森塔尔式的瞬时界限。通过通过Paley-Zygmund不平等获得的浓度不平等的较低界限,显示了拟议界限的紧凑性。结果应用于图形模型推论问题,改进了以前的样本复杂界限。</s>