Vulnerability prediction refers to the problem of identifying system components that are most likely to be vulnerable. Typically, this problem is tackled by training binary classifiers on historical data. Unfortunately, recent research has shown that such approaches underperform due to the following two reasons: a) the imbalanced nature of the problem, and b) the inherently noisy historical data, i.e., most vulnerabilities are discovered much later than they are introduced. This misleads classifiers as they learn to recognize actual vulnerable components as non-vulnerable. To tackle these issues, we propose TROVON, a technique that learns from known vulnerable components rather than from vulnerable and non-vulnerable components, as typically performed. We perform this by contrasting the known vulnerable, and their respective fixed components. This way, TROVON manages to learn from the things we know, i.e., vulnerabilities, hence reducing the effects of noisy and unbalanced data. We evaluate TROVON by comparing it with existing techniques on three security-critical open source systems, i.e., Linux Kernel, OpenSSL, and Wireshark, with historical vulnerabilities that have been reported in the National Vulnerability Database (NVD). Our evaluation demonstrates that the prediction capability of TROVON significantly outperforms existing vulnerability prediction techniques such as Software Metrics, Imports, Function Calls, Text Mining, Devign, LSTM, and LSTM-RF with an improvement of 40.84% in Matthews Correlation Coefficient (MCC) score under Clean Training Data Settings, and an improvement of 35.52% under Realistic Training Data Settings.


翻译:脆弱性预测是指识别系统最有可能脆弱的组成部分的问题。 通常, 这个问题通过培训历史数据方面的二分级人员来解决。 不幸的是, 最近的研究显示, 这种方法之所以表现不佳,原因有以下两个:(a) 问题的不平衡性质, 以及(b) 内在噪音的历史数据, 即大多数脆弱性的发现比引入的时间要晚得多。 这误导了分类人员,因为他们学会了承认实际的脆弱组成部分是不可忽略的。 为了解决这些问题,我们建议了TROVON, 这是一种通常从已知的脆弱组成部分而不是脆弱和不可忽略的组成部分学习的技术。 我们通过对比已知的脆弱组成部分及其各自的固定组成部分来做到这一点。 这样,TROVON学会学会从我们所知道的事物中学习, 也就是脆弱性, 也就是说,大多数脆弱和不平衡的数据。 我们通过将TROVON与三种安全临界开放源系统的现有技术进行比较, 即 Linux Kernel, OpenSSL, 和 Werresershark, 其历史脆弱性预测能力在LOVS 数据库中, 已经明显地展示了目前的脆弱性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员