Smoothers are algorithms for Bayesian time series re-analysis. Most operational smoothers rely either on affine Kalman-type transformations or on sequential importance sampling. These strategies occupy opposite ends of a spectrum that trades computational efficiency and scalability for statistical generality and consistency: non-Gaussianity renders affine Kalman updates inconsistent with the true Bayesian solution, while the ensemble size required for successful importance sampling can be prohibitive. This paper revisits the smoothing problem from the perspective of measure transport, which offers the prospect of consistent prior-to-posterior transformations for Bayesian inference. We leverage this capacity by proposing a general ensemble framework for transport-based smoothing. Within this framework, we derive a comprehensive set of smoothing recursions based on nonlinear transport maps and detail how they exploit the structure of state-space models in fully non-Gaussian settings. We also describe how many standard Kalman-type smoothing algorithms emerge as special cases of our framework. A companion paper explores the implementation of nonlinear ensemble transport smoothers in greater depth.
翻译:滑动器是贝叶西亚时间序列再分析的算法。 大部分操作滑动器要么依靠卡曼型的飞速变换,要么依靠顺序重要性抽样。 这些战略占据了计算效率和可缩放的频谱的相反的两端,以进行统计通用性和一致性的计算:非加澳新使得卡曼的飞速更新与真正的巴伊西亚解决办法不一致,而成功重要取样所需的混合尺寸可能令人望而却步。 本文从测量运输的角度重新审视平滑问题, 这为巴伊西亚的推断提供了一致的先质变换前景。 我们利用这一能力, 提出了一个基于基于运输平滑的总体的共通框架。 在此框架内, 我们根据非线性运输图绘制一套全面的平滑循环图, 并详细说明它们如何在完全非加西安的环境下利用国家空间模型的结构。 我们还描述了许多标准的卡曼型平滑动算法作为我们框架的特殊例子出现。 一份配套文件探索了在更深的深度上实施非线性多的运输平滑动器。