This paper considers doing quantile regression on censored data using neural networks (NNs). This adds to the survival analysis toolkit by allowing direct prediction of the target variable, along with a distribution-free characterisation of uncertainty, using a flexible function approximator. We begin by showing how an algorithm popular in linear models can be applied to NNs. However, the resulting procedure is inefficient, requiring sequential optimisation of an individual NN at each desired quantile. Our major contribution is a novel algorithm that simultaneously optimises a grid of quantiles output by a single NN. To offer theoretical insight into our algorithm, we show firstly that it can be interpreted as a form of expectation-maximisation, and secondly that it exhibits a desirable `self-correcting' property. Experimentally, the algorithm produces quantiles that are better calibrated than existing methods on 10 out of 12 real datasets.
翻译:本文考虑使用神经网络(NNs)对受审查的数据进行四分位回归。 这增加了生存分析工具包,允许直接预测目标变量,同时使用灵活的功能近似法,对不确定性进行无分布特性分析。 我们首先展示如何将线性模型中流行的算法应用于NNs。 然而,由此产生的程序效率低下,要求每个想要的微小都按部就班地优化单个NN。 我们的主要贡献是一种新奇的算法,它同时对单个NNC输出的量化网进行优化。 为了对我们的算法进行理论上的洞察,我们首先显示它可以被解释为一种期望最大化的形式,其次表明它展示出一种可取的“自我纠正”属性。 实验性算法产生比12个真实数据集中的10个现有方法更精确的量化。