Joint latent class modelling has been developed considerably in the past two decades. In some instances, the models are linked by the latent class k (i.e. the number of subgroups), in others they are joined by shared random effects or a heterogeneous random covariance matrix. We propose an extension to the joint latent class model (JLCM) in which probabilities of subjects being in latent class k can be set to vary with time. This can be a more flexible way to analyse the effect of treatments to patients. For example, a patient may be in period I at the first visit time and may move to period II at the second visit time, implying the treatment the patient had before might be noneffective at the following visit time. For a dataset with these particular features, the joint latent class model which allows jumps among different subgroups can potentially provide more information as well as more accurate estimation and prediction results compared to the basic JLCM. A Bayesian approach is used to do the estimation and a DIC criterion is used to decide the optimal number of classes. Simulation results indicate that the proposed model produces accurate results and the time-varying JLCM outperforms the basic JLCM. We also illustrate the performance of our proposed JLCM on the aids data (Goldman et al., 1996).


翻译:在过去二十年中,联合潜伏类建模有了相当大的发展,在某些情况下,模型与潜伏类k(即分组数目)相联系,在另一些情况下,模型与隐伏类K(即分组数目)相联,同时有共同随机效应或杂异随机共变矩阵。我们建议扩展联合潜伏类模型(JLCM),在这种模型中,潜伏类K的主体概率可以定得随着时间的变化而变化。这可以成为分析治疗对病人影响的一种更灵活的方法。例如,病人在第一次访问时可能处于第一阶段,在第二次访问时可能进入第二阶段,这意味着患者以前曾接受的治疗在下次访问时可能无效。对于具有这些特点的数据集,允许不同分组跳跃的联合潜伏类模型可以提供更多信息,以及更准确的估算和预测结果,采用巴伊西亚方法进行估计,并使用DIC标准决定最佳的班数。模拟结果显示,拟议的模型产生准确的结果,而JLCM和JRC模拟了我们1996年拟议的基本性能(JLCM)。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员