Recent years have witnessed a renewed interest in Boolean function in explaining binary classifiers in the field of explainable AI (XAI). The standard approach of Boolean function is propositional logic. We present a modal language of a ceteris paribus nature which supports reasoning about binary input classifiers and their properties. We study a family of classifier models, axiomatize it as two proof systems regarding the cardinality of the language and show completeness of our axiomatics. Moreover, we prove that satisfiability checking problem for our modal language is NEXPTIME-complete in the infinite-variable case, while it becomes polynomial in the finite-variable case. We furthermore identify an interesting NP fragment of our language in the infinite-variable case. We leverage the language to formalize counterfactual conditional as well as a variety of notions of explanation including abductive, contrastive and counterfactual explanations, and biases. Finally, we present two extensions of our language: a dynamic extension by the notion of assignment enabling classifier change and an epistemic extension in which the classifier's uncertainty about the actual input can be represented.
翻译:近几年来,人们重新关注布林函数在解释可解释的 AI (XAI) 领域解释二进制分类。布林函数的标准方法是推理逻辑。我们展示了一种预食者法的模范语言,支持二进制分类者及其属性的推理。我们研究了一组分类模型,将其作为关于语言重要性的双重证明系统,并显示了我们的异构法的完整性。此外,我们证明,我们模式语言的可比较性检验问题是无穷无尽的,在可变案件中是完全的,而在可变性案件中则是多元的。我们进一步确定了我们语言在无限变化情况下的一个有趣的NP碎片。我们利用该语言将反事实条件和各种解释概念正式化,包括绑架、对比和反事实解释以及偏见。我们提出了我们语言的两个扩展:通过分配概念进行动态扩展,使分类者的变化得以实现,以及缩略图中关于实际输入的不确定性可以代表的缩略图。